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Abstract 

 One of the most important technologies used in the analysis of proteomic data today is liquid 

chromatography mass spectrometry.  As this technology has emerged in its modern form only recently, there is 

much that can be done to improve it.  I demonstrate here several methods for the analysis of LC-MS raw scan data. 

 
Introduction to Proteomics 

 
  The biological sciences are moving forward at an astonishing rate.  Since the publication of Watson and 

Crick’s famous paper proposing a structure for the protein Deoxyribose Nucleic Acid (DNA) less than a century 

ago, we have completely sequenced over 200 organisms, in addition to the partial sequencing countless other 

genomes (Watson & Crick, 1953).   The wealth of genetic information generated by this work has transformed the 

fields of biology and medical research by allowing the large-scale interpretation of genetic data and cellular function 

(Lane, 2005).  Tests have been developed for the rapid identification of genetic diseases such as PKU as well as the 

early characterization of risk factors for other genetic anomalies like breast cancer. While the advances in the field 

of genetics have proven an invaluable tool for the illumination of cellular function, the emphasis in molecular 

biology is now experiencing a shift away from sequencing DNA and characterizing genes toward a systematic 

evaluation of how the myriad of encoded gene products operate in order to sustain life (Listgarten & Emili, 2005).  

That is, rather than examining the differences in the nucleotide sequences that comprise individual genes, biologists 

are now expending an increasing amount of their time in trying to understand the protein products of those genes, as 

well as their interactions. 

 This new focus in biology has been termed proteomics, and it differs greatly from genomics in both 

complexity and scale.  As an introduction to the field of proteomics, it is worthwhile to compare it to the more 

widely understood field of genomics.  Genomics has been defined as “the comprehensive study of all genes in a cell 

or organism, how they interact and their functions” (ESA Glossary, 2007).  Findings in the field of genomics could 

be that having a particular allele (one version of a gene) of gene A increases one’s risk of cancer by 40%.  This 

analysis can be done at birth and will remain unchanged throughout the life of the individual with gene A.  
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Alternatively, proteomics could be defined as the comprehensive analysis of all of the proteins found within a cell or 

organism, their interactions, and their functions.  A result in this field could be the finding that an abnormal amount 

of protein A is the cause of Parkinson’s disease.  The definitions of these two fields of study are very similar, as are 

their aims.  Both are concerned with studying a type of biological molecule to come to a greater understanding of 

how the human body functions, often with the ultimate goal of maintaining or improving that function.  While 

genomics research seeks to reach these goals through the study of genes, proteomic research deals with proteins.  

However these differences, semantic as they may seem, make a tremendous difference in the scope and depth of the 

research. 

 In regards to the scope of the fields, one need only look at the molecules themselves.  Genes are comprised 

a sequence of four separate nucleotides strung together to form a blueprint from which proteins can be translated.   

These genes are primarily found in either a double stranded helical structure, as is the case with DNA, or a single 

stranded structure, as is the case with RNAs.  The types of interactions that can occur between these molecules have 

been well understood for decades.  Proteins, on the other hand, are comprised of a sequence of twenty different 

amino acids that are strung together to form individual protein residues.  These protein residues can then be 

combined, chopped up, shifted, twisted, or turned into a tremendous array of different conformations and 

combinations.  In contrast to the regular helical structure of DNA, the physical characteristics of the individual 

protein residues allow the proteins residues themselves to fold into an immense number of arrangements.  Taking 

the human genome and the human proteome as an example, the difference in scope becomes readily apparent.  

Though currently unknown, the number of genes in the human genome has been estimated at around 25,000.  The 

number of proteins found in the human proteome has been projected to be over two-million.  

 Concerning the depth of the research, the challenges presented by proteomic analysis are far more complex 

than the huge but basically straightforward challenge of sequencing the genome of an organism.  While genomes are 

static molecules that change little over the lifetime of an organism, proteomes are dynamic.  This property is shown 

particularly well through the example of the monarch butterfly.  This organism begins its life as a larva that bears 

more resemblance to a worm than to a grown butterfly.  However, after a great deal of development, the larva 

experiences a metamorphosis through which it is transformed into its final winged form.  From the beginning to the 

very end of this process, the butterfly maintains the very same set of genes.  Forgetting for a moment the very likely 

scenario of minor genetic mutations, the genome of the larva can be said to be identical to that of the fully grown 
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butterfly.  However, at every stage of this process, the set proteins found in the organism is different.  In fact, it is 

very probable that every minute the complex mixture of proteins found in the organism experiences a detectable 

shift.  Given the very palpable physical changes that the butterfly undergoes, it becomes clear that a study merely of 

the genetics of the butterfly would lead to an incomplete picture of how that organism really functions.  Without a 

deep understanding of the proteins found in that organism during the different stages of its life, we cannot mentally 

reconcile the physical changes we witness.  This dynamism found in the field of proteomics has led some 

researchers to modify the more traditional definition of the field to better encompass its unique challenges.  One 

revised definition describes the study of proteomics as “the qualitative and quantitative comparison of proteomes 

under different conditions to further unravel biological processes” (Reinert & Kohlbacher, 2005).  Important to note 

in this new definition is the addition of differential conditions.  It is in this difference that we find some of the most 

valuable aspects of proteomic analysis.  However, with added information come added challenges. 

 The sheer size and complexity of proteomics make its research a very technology-driven enterprise.  It is in 

the technology that we find a final contrast between proteomic and genomic analysis.  While the technologies used 

to sequence the human genome (among many other genomes) are well established and fully automated, the tools 

used in proteomic analysis have only recently emerged.  A paper in Nature cites mass spectrometry, a technology in 

its modern form only a decade old and the object of my research as the most important among the five pillars of 

proteomics analysis tools (Tyers & Mann, 2003).  The relative youth and obvious importance of each of these tools 

them an area ripe for the innovation of new techniques and methods.  In the same way that advances in genetic 

sequencing technology have allowed for incredible feats like the sequencing of the human genome, advances 

applied to the tools used in proteomic analysis promise to become incorporated into a whole generation of new 

scientific discoveries. 

 

My Project 

  As mentioned above, there is a great deal of progress yet to be made in the field of proteomics.  Regardless 

of the direction that the field takes, the instrumentation used to carry out proteomic analysis will be of great 

importance.  It is for this reason that I elected to work on improving the raw-data analysis on one of the most 

important tools used in this research, liquid chromatography mass spectrometry.  The use of this process allows 

researchers to identify and quantify not just individual proteins, but large and complex mixtures of proteins such as 
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one would find in a larva, butterfly, or human being.  As such, this process has become the method of choice for 

most proteomic analysis (Listgarten & Emili, 2005).  However, there are still a great number of difficulties yet to be 

adequately addressed.  These include: experimental noise, systematic variation between experimental runs, the 

extreme overall range and dynamic nature of protein levels, the huge number of protein features (peaks) in which 

there are an enormous number of uncorrelated features (Tyers & Mann, 2003).   

The idea to develop a program to analyze LC-MS scan information as the specific data with which I 

worked came from the results of a previous study completed in 2007 by a team of researchers led by Lukas N. 

Mueller located in Zurich, Switzerland.  These researchers introduced a new tool named SuperHirn that was to be 

used to analyze raw LC-MS scans.  Despite their best efforts, the analysis completed by Mueller et al. was found to 

be sub-satisfactory by a team of researchers at Princeton University.  The product of the study, a data set that could 

be used for cross-proteomic analysis, was found to be of low resolution and poor quality.  The methods used by 

Mueller et. al had resulted in important signal loss, resulting in an unusable data.  Compounding these difficulties, 

many of the methods used were very poorly documented, lacked clear reasoning, or were found to be difficult to 

reproduce.  The product of these difficulties was the initiative to develop a new program to analyze raw LC-MS 

data. 

This assignment was taken up by Zia Khan, a graduate student working in the lab of Mona Singh.  Zia 

developed a large currently unnamed program used to do LC-MS analysis.  The primary goal of the project was to 

develop a means of protein identification and quantification that had an absolute minimum of data loss.  In order to 

accomplish this, Zia developed a program meant to work with data at a much more basic level than had previous 

researchers (Khan, 2007).  This program is represented as step two in Figure 1 below.  While this analysis worked 

well, some aspects of data needed thoughtful pre-processing before they were used in Khan’s algorithms.  It was 

necessary to develop algorithms that had an absolute minimum of data loss before the data was ported into his 

program.  It is with that goal in mind that I was commissioned to develop a program to work with the very most 

basic form of LC-MS data, the LC-MS scan profile.  However, in order to understand why this is important, one 

must first understand where my program and Zia’s fit into the current flow of research.   

.  The LC-MS scan profile is the very first file generated by any LC-MS scan.  This profile represents an 

enormous amount of data, as it contains the entire protein signal as well as all background noise.  Ordinarily this file 

is then stripped of its low intensity peaks to generate LC-MS peak data.  While LC-MS peak data represents a 
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smaller and more manageable file, it is of a lower resolution and quality than the raw scan profile.  It is from this file 

that a protein signal matrix can be developed.   The protein signal matrix is a listing of all of the protein fragments 

that have been identified, along with their relative intensities.  The generation of this protein matrix is where the 

majority of the current research into LC-MS analysis is done, and is represented by step three in Figure 1 below 

(Lane, 2005).  That the majority of research is done converting the LC-MS peak data to the protein signal matrix is 

understandable, as it is at this point that the information in the LC-MS scan actually becomes useful.  From this 

protein signal matrix, one can determine what levels of protein are abnormally high or low in comparison to the 

other proteins in the scan.  This comparison, termed comparative protein analysis, gives biologists a tremendous tool 

in the search for disease pathologies, most notably cancer.  Through the use of protein signal matrices from the cells 

of several individuals, one of whom has cancer, one can determine which proteins are expressed at different level 

(Foss, et al.).  If it was found, as in Figure 1 below, that one protein was expressed at a higher level in the individual 

with cancer, it would make sense to isolate this protein for further study.   As an example, protein D below would be 

an excellent source for new research into the pathology of cancer.  However, this research is by no means limited to 

cancer, and could conceivably diagnose any disease, among a great many other conditions. 

 

Figure 1: Outline demonstrating the standard flow of research 

Each arrow in the above diagram represents some form of data loss.  Surprisingly, the decision to develop 

algorithms that work exclusively with raw scan data is surprisingly novel (Listgarten & Emili, 2005).  While very 

basic algorithms have been developed for the processing of this raw scan data, they are mostly concerned with 

reducing the size of these scans. Little time has been devoted to generating a single model that does extensive 
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computation on this most basic form of data.  One result of the lack of research in this area is that any improvements 

made at this most basic level of processing could, in turn, be used in all current and future research in this field.  

This benefit is especially true of the program currently in development by Zia Khan.  By developing algorithms for 

the processing of raw data scans and testing my results with his program, I created a program specifically, though 

not exclusively, tailored to be optimal for use in his later analysis. 

The first stage of this project was to develop a data viewer.  This was important both for viewing the raw 

data as well as visually determining the effectiveness of the algorithms later tried.  Once this stage was complete, 

several new ideas would be tried in order to filter out peaks not necessary for future analysis while maintaining as 

many useful peaks as possible.  Finally it was necessary to develop some means of determining the success of these 

algorithms. 

 

Liquid Chromatography Mass Spectrometry (LC-MS) 

 While many technologies form the base of proteomic research, mass spectrometry (MS) has been cited as 

one of the most important and today is the most sensitive and straightforward method for identifying and quantifying 

proteins (Tyers & Mann, 2003).  MS measures with extreme sensitivity, the mass over charge (m/z) ratios of gas-

phase ions.  Since its development by J.J. Thomson and his student F.W. Aston, MS has played an increasingly 

significant role in proteomic analysis (Lane, 2005).  Since proteins are generally large molecules, the first stage in 

MS is to break these proteins down into a more reasonable size.  This can be accomplished through the use of an 

enzyme called trypsin that cuts at specific sequences.  As an example let us consider the amino acid sequence for a 

protein involved in T-cell lymphoma-1 shown below.  

 
MAECPTLGEAVTDHPDRLWAWEKFVYLDEKQHAWLPLTIEIK
DRLQLRVLLRREDVVLGRPMTPTQIGPSLLPIMWQLYPDGRYR
SSDSSFWRLVYHIKIDGVEDMLLELLPDD  
 

 Trypsin will cut the above sequence at any point where there is an arginine (R) or a lysine (K).  If we were 

to digest the above sequence with trypsin, the result would be the ten smaller shown below in Table 1.  I have added 

at left the masses of these sequences in Daltons.  Comparing this table against a collection of known protein 

fragments allows researchers to determine the identity of a given protein, assuming this protein is already in the 

database. 
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Table 1 

Mass in Daltons Tryptic Fragment Sequence 
3379.7540 EDVVLGRPMTPTQIGPSLLPIMWQLYPDGR 
1841.8156 MAECPTLGEAVTDHPDR 
1686.8142 IDGVEDMLLELLPDD 
1448.8260 QHAWLPLTIEIK 
971.4217 SSDSSFWR 
913.4665 FVYLDEK 
832.4352 LWAWEK 
772.4716 LVYHIK 
529.3456 LQLR 
500.3555 VLLR 

 

 The final result of a mass spectrometry scan is a two-dimensional profile that shows the relative intensity 

values of each of the fragments as well as their m/z value.  In general, the charge of these proteins is one, so the m/z 

value simplifies to just m (Khan, 2007).  In Figure 2 below, we can see the MS spectrum for the T-cell lymphoma-1 

protein digested with trypsin.  In addition, three of the most intense peaks have been identified by their sequences.  

One can see that these sequences are the same as the sequences found in Table 1 above.  Peaks with intensities such 

as these (representing a great deal of protein) would be most readily identifiable when compared with previously 

seen protein matrices. 

 
Figure 2: MS spectrum for the T‐cell protein digested with trypsin 

 
Mass spectrometry is an excellent means of determining protein identity when one can easily isolate and 

purify individual proteins.  However, as mentioned previously, protein mixtures in the real world are tremendously 

variable and often it may be difficult or even impossible to isolate individual proteins from complex mixtures.  It is 

for this reason that mass spectrometry has been paired with liquid chromatography to form liquid chromatography 

mass spectrometry (LC-MS).  This process, which is the object of my research, also begins with the tryptic digestion 

of proteins.  However, in this case the protein sample is not simply one isolated protein, but rather an assortment of 
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proteins.  An excellent example of such a mixture would be a human blood sample, and in the course of my project I 

worked with similar data.  Once digested, this mixture is put into a liquid chromatography (LC) column.  The 

proteins are then drawn through the column at different speeds corresponding to their physical characteristics.  Once 

they reach the end of the column (different proteins will reach this end at different points) they are immediately sent 

into a mass spectrometer.  The result is a matrix with axes corresponding to the time at which the protein left the LC 

column (its retention time) the mass over charge ratio of the protein (m/z value) and the relative amount of protein 

found (its intensity).  Figure 3 below is a very small subset of actual data from my project demonstrating the 

resulting three-dimensional matrix.  Figure 4 demonstrates the graph of a single retention time within the data seen 

in Figure 3.  

 
Figure 3: A small subset of the Mueller et. al data showing the dimensionality of the data 

 

 
Figure 4: A single retention time from the scan in Figure 3 

   

The Data Set 

The specific data with which I am working was originally found in a paper by Mueller et al. published in 

the journal Proteomics in 2007 (Mueller, et al., 2007).  The data was downloaded August 25th, 2007 from 

http://prottools.ethz.ch/muellelu/web/Latin_Square_Data.php. The proteins fragments represented include the tryptic 
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digests of several standard non-human proteins.  The data is encoded in 19 xml files, each of which is roughly 1GB 

in size.  Each of these files represents a single LC-MS scan.  The data found within these files is essentially a very 

large list of peaks.  Each of these peaks contains information about retention time, m/z value, and intensity.  In 

addition to these basic facts, a great deal of other information was also included in these files regarding MS/MS 

analysis (a method by which one can obtain specific protein sequences in addition to simply their mass), as well as a 

great deal of information about the specific settings of the instrumentation and preparation methods of the proteins.  

This information was unused in my analysis, though may present an interesting direction for further research.  

 

Raw Signal Processing 

 The first step in this research project was the find a reliable and effective way to view the data.  Originally, 

this was anticipated to form a very large part of this project as it was assumed that the data would be very noisy.  

Work with previous data and the literature suggested that the peaks would have to be identified.  Due to the way in 

which LC mass spectrometers work, the baseline for the raw data normally contains non-zero peaks at a majority of 

the possible positions.  A complicating factor often found in LC-MS data is that often the intensity of this noise is on 

a gradient for every given retention time.  For example, the background intensity levels are higher, on average, in 

areas of high mass over charge ratios than they are in areas of low m/z ratios.   

 Another step found previously when working with raw LC-MS scans was the need to address systematic 

flaws in the data that occur at a specific m/z ratio.  In previous data sets, it was necessary to mask out certain m/z 

ranges that consistently contained false peaks.  These areas can, with a little knowledge, be identified visually.  They 

are represented as lines that span the entire LC-MS scan at an intensity level higher than surrounding regions.  They 

differ from data points in both the fact that they exist at every retention time, as well as the fact that they do not 

show the characteristic isotope spacing (on the m/z axis) that is found in protein signals.  Instead, these points are 

found in close m/z proximity to one another.  In order to mask these points, all that must be done is to either remove 

these m/z ranges from the data set, or write some small piece of code into the analysis program that makes sure it 

does not consider peaks within these ranges.  While visual identification and masking is not difficult, one research 

goal in using the Mueller data was to find a way to systematically mask these features in order to improve the 

automation and speed of the process. 
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 Below is shown an example of a previous LC-MS scan using a previous data set.  Though it may be 

difficult to identify from this small example, it contains the shifted baseline intensity values mentioned above.  Also 

visible are the systematic errors found in many of these scans.  A particularly good example of this can be identified 

95% down the image where there is a band of bright peaks that stretches across the entire scan.  Were this data to be 

analyzed, this m/z range would have to be removed.  Features with high intensity are shown in bright colors (yellow) 

and low intensity peaks are shown as darker colors (blue).  Peaks of zero intensity are shown in black.  

 

 

Figure 5: Scan from a previous study done by Zia Khan 

 
However, when the Mueller data was examined, it was found to be a considerable amount cleaner than 

expected.  Rather than finding the variable non-zero baseline intensity values, the Mueller raw data contained mostly 

zeroed peaks and real protein signal.  Also not located were the systematic data aberrations mentioned above.  There 

are a number of possible explanations for the cleanliness of the Mueller data.  The first and most obvious of which is 

that some pre-processing had already been completed on the data before it was posted to the website from which it 

was downloaded.  However, more likely is that the LC-MS machine in which the data was scanned was of a newer 

lineage and was actually more effective than previous models.  This explanation fits in well with one of the largest 

difficulties in attempting raw LC-MS scan analysis, which is that every scanner, and thus every scan, is different 

(Reinert & Kohlbacher, 2005).  Since scans are being done all over the world with a wide variety of different 

scanners and settings, there is no genuine standardized raw data.  In this instance, the result of this variability was 

fairly positive.  The result of this rather happy finding was that less work needed to be done pre-processing the data 

before further analysis could be done.   
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Given that the data was so clean, the creation of a raw data viewer was not particularly difficult.  As with 

the rest of the code in this project, it was written in C++ and makes use of several large libraries for both reading 

xml files as well as creating a simple GUI in order to examine points in the data.  Only minor semantic 

modifications were made to this program in order to view the new Mueller data.  The results of these modifications 

are the photographs below.  Here we can see the more sparse nature of the data without the background noise that 

characterized previous data sets.  One caveat when examining pictures of the Mueller data set was that the computer 

with which I worked did not have the requisite memory to load an entire file into the image viewer.  In order to deal 

with this problem, it was necessary to carved up the original data files into smaller and more manageable 

subsections that were less memory-intensive. 

 

 

Figure 6: Subsection of data from the Mueller data set showing large areas of zeroed peaks 

 

2D Peak Finding 

 The next step in this analysis was to find a method of deleting extraneous peaks.  One of the best ways to 

differentiate between peaks that are simply background noise, and those that represent protein signal is to determine 

whether or not the signal continues over time.  The logic behind this process is that, when examined over time, 

protein signal should form a bell curve that corresponds to the amount of any given type of protein currently coming 

off the LC column.  It is unlikely that the entirety of a protein fragment would make it through the LC column at the 

exact same speed and thus show up on the mass spec at the exact same retention time.  In reality, it is more likely 

that some small percentage of any protein fragment will arrive slightly ahead of the bulk of its peers, and those peers 

will in turn be followed by a small percentage of protein that made it through the column at a slower rate.  In 

contrast to the bell curve example of real protein signal, much of the noise in the protein samples occurs as a lone 
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feature or peak at a single retention time.  The obvious solution to this occurrence is to locate and remove those 

peaks that are not surrounded by a sufficient number of similar peaks. 

 Many different methods could be applied to this problem, the first of which would be a statistical method 

used to fit a bell curve on top of peaks across the retention time axis.  Peaks that were found to be similar to this bell 

curve would be kept while those dissimilar would be removed from consideration.  However, it is important to note 

that retention times are not sampled at an even rate (Listgarten & Emili, 2005).  Since these retention times vary in 

rate, it becomes slightly more difficult to fit exact statistical methods to the location of extraneous peaks.  Rather 

than use this method, another method of 2D peak finding was selected.  This method involved drawing areas of 

influence around every single peak in the data set.  These areas were rectangles that have a greater width along the 

retention time axis, than they do height along the m/z axis.  Every peak was then given a score corresponding to the 

number of boxes under which it fell.  Finally, a cutoff point was defined such that those peaks with a score of at least 

a certain level would be kept, and the remaining peaks were removed from consideration.  Originally it was assumed 

that protein signal would maintain an exact or very close to exact m/z ratio across many retention times.  Were this 

the case, it would be unnecessary to add any height to the boxes.  This was done in order to take into account the 

minor variations in the m/z ratios of protein signals across different retention times.  Figure 7 below is a visual 

demonstration of a subsection of the Mueller data before peaks were dropped.  It is possible to locate several peaks 

in this picture alone that only contact one density box.  These peaks very likely do not represent any part of a protein 

and would be dropped. 

 

 
Figure 7: Subsection of Mueller data showing density boxes 
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every instance where the slope of that window shifted from positive to negative.  The result of this algorithm would 

be something like the picture shown below.  However, this too was not without problems.  Figure 11 below 

demonstrates the results of this algorithm.  The difficulty lies in the fact that many extraneous peaks lie at the 

leading and trailing edges of high intensity features.  While the high intensity features are important, the peaks to the 

right in the figure below are not.  However, these values shift between positive and negative slopes rapidly, resulting 

in many unnecessary peaks being returned.   The trailing edges of the top graph in Figure 11 are blown up and 

shown again below.  It becomes apparent that even when viewed at a higher resolution, some of the peaks are not 

even visible.  However, these peaks would be picked up by the slope finding algorithm and returned for further 

analysis.  

 Previous research had suggested the mean shift method be used in order to group together features 

belonging to the same peak (Reinert & Kohlbacher, 2005).  This method works by first passing a window over the 

data.  At every single frame of this passing, the intensity weighted mean m/z value is calculated.  Finally, all of the 

peaks in range of that window are then shifted towards the weighted mean.  The result of this method is that less 

intense peaks travel towards more intense peaks.  However, this method differs from previous examples in that it 

does not allow very intense peaks to effectively drown out lower intensity peaks.  Once this algorithm has been run 

on a chunk, another gap function is used to split the chunk into several different pieces.  These separate pieces can 

then be transferred into the original signal resolution method which calculates the intensity weighted mean m/z 

value and returns a single peak.  This is demonstrated by Figure 12 below.  In these two graphs we see two time 

steps from the mean shift algorithm.  The first step locates each of the peaks in the current chunk by generating a 

new peak under them.  As the window moves to the right along the higher m/z values, it moves the less intense 

peaks in the same direction.  
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density boxes applied.  That is to say, these numbers are true of the number of peaks after that algorithm had been 

applied. 

 
Figure 13: Summary of algorithms used to deal with multiple peaks 

Future Directions 

 As mentioned previously, there is a great deal of work yet to be done in liquid chromatography mass 

spectrometry data analysis.  In fact a number of the algorithms used in this paper could be improved.  Specifically, it 

might be worthwhile to modify the density boxes to take into consideration intensity values.  For example, those 

peaks that have very high intensity values could be given a greater density box weight.  Since background noise 

peaks tend to be rather smaller than real peaks, this might result in more reliable feature detection.  Further research 

directions can also be found for the mean shift algorithm.  Presumably, if this algorithm works well enough, there is 

no real reason to use chunking.  It might make more sense to simply run this algorithm against the entire retention 

time and once that is done, search for areas within the resulting graph of a minimum weighted density.  These dense 

areas could in turn be searched for characteristic peaks.  This method, in contrast to the one currently in use, would 

ensure that no peaks were accidentally cut in half by the chunking method.  Finally, an important future research 

direction is a means to really quantify results.  Although a great deal of effort has been devoted to examining these 

methods, it is extremely difficult to say quantitatively exactly how much better they fare in real tests than previous 

methods (Lane, 2005).  This is partially a result of the specific location along the research chain that this project was 

located.  It is difficult to say with any certainty exactly how well these algorithms work as their final results rely on a 

long line of research.  While the results shown by pre-processing files with these methods for Zia’s program look 

promising, this is no guarantee that they will be a positive influence on the results of other experiments.  In addition, 
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given the variable nature of LC-MS scan files themselves, there is still more uncertainty as to their efficacy on other 

data files that represent proteins from other animals or that were scanned on different machines under different 

conditions. 

 

Conclusion 

 The work I have completed here is hopefully one of the first among many more attempts at analyzing the 

most basic levels of LC-MS scan data.  Despite these minor caveats found above, one can hope that more analysis 

will eventually follow.  The benefits that we stand to gain through the exacting assessment of this important 

biological information are almost limitless.  The development of these tools, most especially LC-MS and related 

technologies, stands to make a tremendous impact on the field of proteomics.  The ability to rapidly and effectively 

identify and quantify proteins with high accuracy is an absolutely critical component of the ultimate goal of 

understanding the human proteome.  The results accrued from this proteomic analysis have yet to be seen, but if the 

previous research surrounding the human genome is any indication, they stand to revolutionize the way we view 

ourselves and the world around us. 
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